Quantum phase slip phenomenon in ultra-narrow superconducting nanorings
نویسندگان
چکیده
The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature T(c) thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole range of experimentally obtainable temperatures. The observation has been associated with quantum fluctuations capable to quench zero resistivity in superconducting nanowires even at temperatures T→0. Here we demonstrate that in tiny superconducting nanorings the same phenomenon is responsible for suppression of another basic attribute of superconductivity - persistent currents - dramatically affecting their magnitude, the period and the shape of the current-phase relation. The effect is of fundamental importance demonstrating the impact of quantum fluctuations on the ground state of a macroscopically coherent system, and should be taken into consideration in various nanoelectronic applications.
منابع مشابه
Experimental evidence of quantum phase slip phenomena in ultra-narrow superconducting channels
A superconducting wire can be considered as quasi-one dimensional (1D) if its characteristic transverse dimension is smaller than the coherence length ξ. The shape of the bottom part of the resistive transition R(T) of a not too narrow 1D strip is well described by the model of thermally activated phase slips [1,2]. However, if the wire width falls into a ~ 10 nm range, there are predictions th...
متن کاملPlasmonic Thermal Conductance of Stack of Metallic Nanorings
In this paper, we study the plasmonic thermal conductance of ordered stacks of metallic nanorings in a host material. Using second quantized formalism of the Random Phase Approximation, we first determine the dispersion relations of surface plasmon waves on the stacks of nanorings. Then, using Landauer-Buttiker formalism, we determine the coefficient of plasmonic thermal conductance and heat cu...
متن کاملJosephson behavior of phase-slip lines in wide superconducting strips.
Phase-slip lines can be viewed as dynamically created Josephson junctions in a homogeneous superconducting film. In contrast to phase-slip centers, phase-slip lines occur in wide superconducting strips, where the order parameter may vary in two dimensions. We investigated phase-slip lines in two different materials using several methods. We observed Shapiro steps under microwave radiation, whic...
متن کاملQuantum Fluctuations of a Superconductor Order Parameter
Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order param...
متن کاملTheory of the pairbreaking superconductor-metal transition in nanowires
We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inver...
متن کامل